
8 Discrete Random Variables

Intuitively, to tell whether a random variable is discrete, we simply
consider the possible values of the random variable. If the random
variable is limited to only a finite or countably infinite number of
possibilities, then it is discrete.

Example 8.1. Voice Lines: A voice communication system for
a business contains 48 external lines. At a particular time, the
system is observed, and some of the lines are being used. Let the
random variable X denote the number of lines in use. Then, X
can assume any of the integer values 0 through 48. [15, Ex 3-1]

Definition 8.2. A random variable X is said to be a discrete
random variable if there exists a countable number of distinct
real numbers xk such that∑

k

P [X = xk] = 1. (11)

In other words, X is a discrete random variable if and only if X
has a countable support.

Example 8.3. For the random variable N in Example 7.5 (Three
Coin Tosses),

For the random variable S in Example 7.6 (Sum of Two Dice),

8.4. Although the support SX of a random variable X is defined as
any set S such that P [X ∈ S] = 1. For discrete random variable,
SX is usually set to be {x : pX(x) > 0}, the set of all “possible
values” of X.

Definition 8.5. Important Special Case: An integer-valued ran-
dom variable is a discrete random variable whose xk in (11)
above are all integers.

84



8.6. Recall, from 7.17, that the probability distribution of a
random variable X is a description of the probabilities associated
with X.

For a discrete random variable, the distribution is often char-
acterized by just a list of the possible values (x1, x2, x3, . . .) along
with the probability of each:

(P [X = x1] , P [X = x2] , P [X = x3] , . . . , respectively) .

In some cases, it is convenient to express the probability in
terms of a formula. This is especially useful when dealing with a
random variable that has an unbounded number of outcomes. It
would be tedious to list all the possible values and the correspond-
ing probabilities.

8.1 PMF: Probability Mass Function

Definition 8.7. When X is a discrete random variable satisfying
(11), we define its probability mass function (pmf) by30

pX(x) = P [X = x].

• Sometimes, when we only deal with one random variable or
when it is clear which random variable the pmf is associated
with, we write p(x) or px instead of pX(x).

• The argument (x) of a pmf ranges over all real numbers.
Hence, the pmf is defined for x that is not among the xk
in (11). In such case, the pmf is simply 0. This is usually
expressed as “pX(x) = 0, otherwise” when we specify a pmf
for a particular random variable.

30Many references (including [15] and MATLAB) does not distinguish the pmf from another
function called probability density function (pdf). These references use the function fX(x)
to represent both pmf and pdf. We will NOT use fX(x) for pmf. Later, we will define fX(x)
as a probability density function which will be used primarily for another type of random
variable (continuous RV).

85



Example 8.8. Continue from Example 7.5. N is the number of
heads in a sequence of three coin tosses.

8.9. Graphical Description of the Probability Distribution: Tra-
ditionally, we use stem plot to visualize pX . To do this, we graph
a pmf by marking on the horizontal axis each value with nonzero
probability and drawing a vertical bar with length proportional to
the probability.

8.10. Any pmf p(·) satisfies two properties:

(a) p(·) ≥ 0

(b) there exists numbers x1, x2, x3, . . . such that
∑

k p(xk) = 1 and
p(x) = 0 for other x.

When you are asked to verify that a function is a pmf, check these
two properties.

8.11. Finding probability from pmf: for any subset B of R, we
can find

P [X ∈ B] =
∑
xk∈B

P [X = xk] =
∑
xk∈B

pX(xk).

In particular, for integer-valued random variables,

P [X ∈ B] =
∑
k∈B

P [X = k] =
∑
k∈B

pX(k).
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8.12. Steps to find probability of the form P [some condition(s) on X]
when the pmf pX(x) is known.

(a) Find the support of X.

(b) Consider only the x inside the support. Find all values of x
that satisfies the condition(s).

(c) Evaluate the pmf at x found in the previous step.

(d) Add the pmf values from the previous step.

Example 8.13. Suppose a random variable X has pmf

pX (x) =

{ c/x, x = 1, 2, 3,
0, otherwise.

(a) The value of the constant c is

(b) Sketch of pmf

(c) P [X = 1]

(d) P [X ≥ 2]

(e) P [X > 3]
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8.14. Any function p(·) on R which satisfies

(a) p(·) ≥ 0, and

(b) there exists numbers x1, x2, x3, . . . such that
∑

k p(xk) = 1 and
p(x) = 0 for other x

is a pmf of some discrete random variable.

8.2 CDF: Cumulative Distribution Function

Definition 8.15. The (cumulative) distribution function (cdf )
of a random variable X is the function FX(x) defined by

FX (x) = P [X ≤ x] .

• The argument (x) of a cdf ranges over all real numbers.

• From its definition, we know that 0 ≤ FX ≤ 1.

• Think of it as a function that collects the “probability mass”
from −∞ up to the point x.

8.16. From pmf to cdf: In general, for any discrete random vari-
able with possible values x1, x2, . . ., the cdf of X is given by

FX(x) = P [X ≤ x] =
∑
xk≤x

pX(xk).

Example 8.17. Continue from Examples 7.5, 7.14, and 8.8 where
N is defined as the number of heads in a sequence of three coin
tosses. We have

pN(0) = pN(3) =
1

8
and pN(1) = pN(2) =

3

8
.

(a) FN(0)

(b) FN(1.5)
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(c) Sketch of cdf

8.18. Facts:

• For any discrete r.v. X, FX is a right-continuous, staircase
function of x with jumps at a countable set of points xk.

• When you are given the cdf of a discrete random variable, you
can derive its pmf from the locations and sizes of the jumps.
If a jump happens at x = c, then pX(c) is the same as the
amount of jump at c. At the location x where there is no
jump, pX(x) = 0.

Example 8.19. Consider a discrete random variable X whose cdf
FX(x) is shown in Figure 9. 3-3 CUMULATIVE DISTRIBUTION FUNCTIONS 73
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Figure 3-3 Cumulative distribution function for
Example 3-7.

Figure 3-4 Cumulative distribution
function for Example 3-8.
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3-32. Determine the cumulative distribution function of the
random variable in Exercise 3-14.

3-33. Determine the cumulative distribution function for
the random variable in Exercise 3-15; also determine the fol-
lowing probabilities:
(a) (b)
(c) (d)

3-34. Determine the cumulative distribution function for the
random variable in Exercise 3-16; also determine the following
probabilities:
(a) (b)
(c) (d)

3-35. Determine the cumulative distribution function for
the random variable in Exercise 3-21.

3-36. Determine the cumulative distribution function for
the random variable in Exercise 3-22.

3-37. Determine the cumulative distribution function for
the random variable in Exercise 3-23.

3-38. Determine the cumulative distribution function for
the variable in Exercise 3-24.

Verify that the following functions are cumulative distribution
functions, and determine the probability mass function and the
requested probabilities.

3-39.

(a) (b)
(c) (d)

3-40. Errors in an experimental transmission channel are
found when the transmission is checked by a certifier that de-
tects missing pulses. The number of errors found in an eight-
bit byte is a random variable with the following distribution:

F1x2 � μ

0 x � 1
0.7 1 � x � 4
0.9 4 � x � 7
1 7 � x

P1X � 22P11 � X � 22
P1X � 22P1X � 32

F1x2 � •
0 x � 1
0.5 1 � x � 3
1 3 � x

P11 � X � 22P1X � 22
P1X � 32P1X � 1.52

P1X � 02P1�1.1 � X � 12
P1X � 2.22P1X � 1.252

Determine each of the following probabilities:
(a) (b)
(c) (d)
(e)

3-41.

(a) (b)
(c) (d)
(e) (f)

3-42. The thickness of wood paneling (in inches) that a cus-
tomer orders is a random variable with the following cumula-
tive distribution function:

Determine the following probabilities:
(a) (b)
(c) (d)
(e)

3-43. Determine the cumulative distribution function for
the random variable in Exercise 3-28.

3-44. Determine the cumulative distribution function for
the random variable in Exercise 3-29.

3-45. Determine the cumulative distribution function for
the random variable in Exercise 3-30.

3-46. Determine the cumulative distribution function for
the random variable in Exercise 3-31.

P1X � 1�22
P1X � 1�42P1X � 5�162
P1X � 1�42P1X � 1�182

F1x2 � μ

0 x � 1�8
0.2 1�8 � x � 1�4
0.9 1�4 � x � 3�8
1 3�8 � x

P1�10 � X � 102P10 � X � 102
P1X � 02P140 � X � 602
P1X � 402P1X � 502

F1x2 � μ

0 x � �10
0.25 �10 � x � 30
0.75 30 � x � 50
1 50 � x

P1X � 22
P1X � 42P1X � 52
P1X � 72P1X � 42

EXERCISES FOR SECTION 3-3

JWCL232_c03_066-106.qxd  1/7/10  10:58 AM  Page 73

Figure 9: CDF for Example 8.19

Determine the pmf pX(x).
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8.20. Characterizing31 properties of cdf:

CDF1 FX is non-decreasing (monotone increasing)

CDF2 FX is right continuous (continuous from the right)

  x    0P X x   

   countable set C,   0XP C   

 
XF  is continuous 

25) Every random variable can be written as a sum of a discrete random variable and a 

continuous random variable. 

26) A random variable can have at most countably many point x such that

  0P X x  . 

27) The (cumulative) distribution function (cdf)  induced by a probability P on 

 ,

  is the function    ,F x P x  . 

The (cumulative) distribution function (cdf) of the random variable X is the 

function      ,X

XF x P x P X x    . 

 The distribution 
XP  can be obtained from the distribution function by setting 

   ,X

XP x F x  ; that is
XF  uniquely determines 

XP . 

 0 1XF   

 
XF  is non-decreasing 

 
XF  is right continuous:  

x           lim limX X X X
y x y x
y x

F x F y F y F x P X x




    


. 

 

  lim 0X
x

F x


  and  lim 1X
x

F x


 . 

 x          lim lim ,X

X X X
y x y x
y x

F x F y F y P x P X x




     


. 

        XP X x P x F x F x     = the jump or saltus in F at x. 

   x y  

      ,P x y F y F x   

      ,P x y F y F x   

 

Figure 10: Right-continuous function at jump point

CDF3 lim
x→−∞

FX (x) = 0 and lim
x→∞

FX (x) = 1.

8.21. For discrete random variable, the cdf FX can be written as

FX(x) =
∑
xk

pX(xk)u(x− xk),

where u(x) = 1[0,∞)(x) is the unit step function.

31These properties hold for any type of random variables. Moreover, for any function F
that satisfies these three properties, there exists a random variable X whose CDF is F .
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8.3 Families of Discrete Random Variables

Many physical systems can be modeled by the same or similar
random experiments and random variables. In this subsection,
we present the analysis of several discrete random variables that
frequently arise in applications.32

Definition 8.22. X is uniformly distributed on a finite set S
if

pX(x) = P [X = x] =

{ 1
|S| , x ∈ S,
0, otherwise,

• We write X ∼ U(S) or X ∼ Uniform(S).

• Read “X is uniform on S” or “X is a uniform random variable
on set S”.

• The pmf is usually referred to as the uniform discrete distri-
bution.

• Simulation: When the support S contains only consecutive in-
tegers33, it can be generated by the command randi in MATLAB

(R2008b).

32As mention in 7.15, we often omit a discussion of the underlying sample space of the
random experiment and directly describe the distribution of a particular random variable.

33or, with minor manipulation, only uniformly spaced numbers
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Example 8.23. X is uniformly distributed on 1, 2, . . . , n if

In MATLAB, X can be generated by randi(n).

Example 8.24. Uniform pmf is used when the random variable
can take finite number of “equally likely” or “totally random” val-
ues.

• Classical game of chance / classical probability

• Fair gaming devices (well-balanced coins and dice, well-shuffled
decks of cards)

Example 8.25. Roll a fair dice. Let X be the outcome.

Definition 8.26. X is a Bernoulli random variable if

pX (x) =


1− p, x = 0,
p, x = 1,
0, otherwise,

p ∈ (0, 1)

• Write X ∼ B(1, p) or X ∼ Bernoulli(p)

• X takes only two values: 0 or 1

Definition 8.27. X is a binary random variable if

pX (x) =


1− p, x = a,
p, x = b,
0, otherwise,

p ∈ (0, 1), b > a.

• X takes only two values: a or b
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Definition 8.28. X is a binomial random variable with size
n ∈ N and parameter p ∈ (0, 1) if

pX (x) =

{ (
n
x

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n},

0, otherwise
(12)

• Write X ∼ B(n, p) or X ∼ binomial(n, p).

◦ Observe that B(1, p) is Bernoulli with parameter p.

• To calculate pX(x), can use binopdf(x,n,p) in MATLAB.

• Interpretation: X is the number of successes in n independent
Bernoulli trials.

Example 8.29. An optical inspection system is to distinguish
among different part types. The probability of a correct classi-
fication of any part is 0.98. Suppose that three parts are inspected
and that the classifications are independent.

(a) Let the random variable X denote the number of parts that
are correctly classified. Determine the probability mass func-
tion of X. [15, Q3-20]

(b) Let the random variable Y denote the number of parts that
are incorrectly classified. Determine the probability mass
function of Y .

Solution :

(a) X is a binomial random variable with n = 3 and p = 0.98.
Hence,

pX (x) =

{ (
3
x

)
0.98x(0.02)3−x, x ∈ {0, 1, 2, 3},

0, otherwise
(13)

In particular, pX(0) = 8 × 10−6, pX(1) = 0.001176, pX(2) =
0.057624, and pX(3) = 0.941192. Note that in MATLAB, these
probabilities can be calculated by evaluating
binopdf(0:3,3,0.98).
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(b) Y is a binomial random variable with n = 3 and p = 0.02.
Hence,

pY (y) =

{ (3
y

)
0.02y(0.98)3−y, y ∈ {0, 1, 2, 3},

0, otherwise
(14)

In particular, pY (0) = 0.941192, pY (1) = 0.057624, pY (2) =
0.001176, and pY (3) = 8 × 10−6. Note that in MATLAB, these
probabilities can be calculated by evaluating
binopdf(0:3,3,0.02).

Alternatively, note that there are three parts. IfX of them are
classified correctly, then the number of incorrectly classified
parts is n − X, which is what we defined as Y . Therefore,
Y = 3 − X. Hence, pY (y) = P [Y = y] = P [3−X = y] =
P [X = 3− y] = pX(3− y).

Example 8.30. Daily Airlines flies from Amsterdam to London
every day. The price of a ticket for this extremely popular flight
route is $75. The aircraft has a passenger capacity of 150. The
airline management has made it a policy to sell 160 tickets for this
flight in order to protect themselves against no-show passengers.
Experience has shown that the probability of a passenger being
a no-show is equal to 0.1. The booked passengers act indepen-
dently of each other. Given this overbooking strategy, what is the
probability that some passengers will have to be bumped from the
flight?

Solution : This problem can be treated as 160 independent
trials of a Bernoulli experiment with a success rate of p = 9/10,
where a passenger who shows up for the flight is counted as a suc-
cess. Use the random variable X to denote number of passengers
that show up for a given flight. The random variable X is bino-
mial distributed with the parameters n = 160 and p = 9/10. The
probability in question is given by

P [X > 150] = 1− P [X ≤ 150] = 1− FX(150).

In MATLAB, we can enter 1-binocdf(150,160,9/10) to get 0.0359.
Thus, the probability that some passengers will be bumped from
any given flight is roughly 3.6%. [21, Ex 4.1]
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Definition 8.31. A geometric random variable X is defined by
the fact that for some constant β ∈ (0, 1),

pX(k + 1) = β × pX(k)

for all k ∈ S where S can be either N or N ∪ {0}.
(a) When its support is N = {1, 2, . . .},

pX(x) =

{
(1− β) βx−1, x = 1, 2, . . .
0, otherwise.

• In MATLAB, to evaluate pX(x), use geopdf(x-1,1-β).

• Interpretation: X is the number of trials required in
Bernoulli trials to achieve the first success.

In particular, in a series of Bernoulli trials (independent
trials with constant probability p of a success), let the
random variable X denote the number of trials until the
first success. Then X is a geometric random variable with
parameter β = 1− p and

pX(x) =

{
(1− β) βx−1, x = 1, 2, . . .
0, otherwise

=

{
p(1− p)x−1, x = 1, 2, . . .
0, otherwise.

• Write X ∼ G1(p) or geometric1(p).

(b) When its support is N ∪ {0},

pX(x) =

{
(1− β) βx, x = 0, 1, 2, . . .
0, otherwise

=

{
p(1− p)x, x = 0, 1, 2, . . .
0, otherwise.

• Write X ∼ G0 (p) or geometric0 (p).

• In MATLAB, to evaluate pX(x), use geopdf(x,1-β).

• Interpretation: X is the number of failures in Bernoulli
trials before the first success occurs.
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8.32. In 1837, the famous French mathematician Poisson intro-
duced a probability distribution that would later come to be known
as the Poisson distribution, and this would develop into one of the
most important distributions in probability theory. As is often re-
marked, Poisson did not recognize the huge practical importance of
the distribution that would later be named after him. In his book,
he dedicates just one page to this distribution. It was Bortkiewicz
in 1898, who first discerned and explained the importance of the
Poisson distribution in his book Das Gesetz der Kleinen Zahlen
(The Law of Small Numbers). [21]

Definition 8.33. X is a Poisson random variable with param-
eter α > 0 if

pX (x) =

{
e−αα

x

x! , x = 0, 1, 2, . . .
0, otherwise

• In MATLAB, use poisspdf(x,alpha).

• Write X ∼ P (α) or Poisson(α).

• We will see later in Example 9.7 that α is the “average” or
expected value of X.

• Instead of X, Poisson random variable is usually denoted by
Λ. The parameter α is often replaced by λτ where λ is referred
to as the intensity/rate parameter of the distribution

Example 8.34. The first use of the Poisson model is said to have
been by a Prussian (German) physician, Bortkiewicz, who found
that the annual number of late-19th-century Prussian (German)
soldiers kicked to death by horses fitted a Poisson distribution [6,
p 150],[3, Ex 2.23]34.

34I. J. Good and others have argued that the Poisson distribution should be called the
Bortkiewicz distribution, but then it would be very difficult to say or write.
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Example 8.35. The number of hits to a popular website during
a 1-minute interval is given by N ∼ P(α) where α = 2.

(a) Find the probability that there is at least one hit between
3:00AM and 3:01AM.

(b) Find the probability that there are at least 2 hits during the
time interval above.

8.36. One of the reasons why Poisson distribution is important is
because many natural phenomenons can be modeled by Poisson
processes .

Definition 8.37. A Poisson process (PP) is a random arrange-
ment of “marks” (denoted by “×” below) on the time line.

The “marks” may indicate the arrival times or occurrences of
event/phenomenon of interest.

Example 8.38. Examples of processes that can be modeled by
Poisson process include

(a) the sequence of times at which lightning strikes occur or mail
carriers get bitten within some region

(b) the emission of particles from a radioactive source
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(c) the arrival of

• telephone calls at a switchboard or at an automatic phone-
switching system

• urgent calls to an emergency center

• (filed) claims at an insurance company

• incoming spikes (action potential) to a neuron in human
brain

(d) the occurrence of

• serious earthquakes

• traffic accidents

• power outages

in a certain area.

(e) page view requests to a website

8.39. It is convenient to consider the Poisson process in terms of
customers arriving at a facility.

We focus on a type of Poisson process that is called homogeneous
Poisson process.

Definition 8.40. For homogeneous Poisson process, there is
only one parameter that describes the whole process. This number
is call the rate and usually denoted by λ.

Example 8.41. If you think about modeling customer arrival as
a Poisson process with rate λ = 5 customers/hour, then it means
that during any fixed time interval of duration 1 hour (say, from
noon to 1PM), you expect to have about 5 customers arriving in
that interval. If you consider a time interval of duration two hours
(say, from 1PM to 3PM), you expect to have about 2 × 5 = 10
customers arriving in that time interval.

8.42. One important fact which we will revisit later is that, for a
homogeneous Poisson process, the number of arrivals during a time
interval of duration T is a Poisson random variable with parameter
α = λT .
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Example 8.43. Examples of Poisson random variables :

• #photons emitted by a light source of intensity λ [photon-
s/second] in time τ

• #atoms of radioactive material undergoing decay in time τ

• #clicks in a Geiger counter in τ seconds when the average
number of click in 1 second is λ.

• #dopant atoms deposited to make a small device such as an
FET

• #customers arriving in a queue or workstations requesting
service from a file server in time τ

• Counts of demands for telephone connections in time τ

• Counts of defects in a semiconductor chip.

Example 8.44. Thongchai produces a new hit song every 7 months
on average. Assume that songs are produced according to a Pois-
son process. Find the probability that Thongchai produces more
than two hit songs in 1 year.

8.45. Poisson approximation of Binomial distribution: When
p is small and n is large, B(n, p) can be approximated by P(np)

(a) In a large number of independent repetitions of a Bernoulli
trial having a small probability of success, the total number of
successes is approximately Poisson distributed with parame-
ter α = np, where n = the number of trials and p = the
probability of success. [21, p 109]
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(b) More specifically, suppose Xn ∼ B(n, pn). If pn → 0 and
npn → α as n→∞, then

P [Xn = k] =

(
n

k

)
pkn(1− pn)n−k → e−α

αk

k!
.

Example 8.46. Consider Xn ∼ B(n, 1/n).

Example 8.47. Recall that Bortkiewicz applied the Poisson model
to the number of Prussian cavalry deaths attributed to fatal horse
kicks. Here, indeed, one encounters a very large number of trials
(the Prussian cavalrymen), each with a very small probability of
“success” (fatal horse kick).

8.48. Summary:

X ∼ Support SX pX (x) =

Uniform U(S) S

{ 1
|S| , x ∈ S,
0, otherwise.

Bernoulli(p) {0, 1}


1− p, x = 0,
p, x = 1,
0, otherwise.

Binomial B(n, p) {0, 1, . . . , n}
{ (

n
x

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n},

0, otherwise.

Geometric G0(p) N ∪ {0}
{
p(1− p)x, x = 0, 1, 2, . . .
0, otherwise.

Geometric G1(p) N
{
p(1− p)x−1, x = 1, 2, . . .
0, otherwise.

Poisson P(α) N ∪ {0}
{
e−α α

x

x!
, x = 0, 1, 2, . . .

0, otherwise

Table 3: Examples of probability mass functions. Here, p ∈ (0, 1). α > 0.
n ∈ N
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8.4 Some Remarks

8.49. Sometimes, it is useful to define and think of pmf as a vector
p of probabilities.

When you use MATLAB, it is also useful to keep track of the
values of x corresponding to the probabilities in p. This can be
done via defining a vector x.

Example 8.50. For B
(
3, 1

3

)
, we may define

x = [0, 1, 2, 3]

and

p =

[(
3

0

)(
1

3

)0(2

3

)3

,

(
3

1

)(
1

3

)1(2

3

)2

,

(
3

2

)(
1

3

)2(2

3

)1

,

(
3

3

)(
1

3

)3(2

3

)0
]

=

[
8

27
,
4

9
,
2

9
,

1

27

]
8.51. At this point, we have a couple of ways to define probabil-

ities that are associated with a random variable X

(a) We can define P [X ∈ B] for all possible set B.

(b) For discrete random variable, we only need to define its pmf
pX(x) which is defined as P [X = x] = P [X ∈ {x}].

(c) We can also define the cdf FX(x).

Definition 8.52. If pX(c) = 1, that is P [X = c] = 1, for some
constant c, then X is called a degenerated random variable.
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